Fundamentals of Fluid Mechanics
- Description
- Curriculum
- FAQ
- Reviews
Welcome to our all-encompassing Fluid Mechanics course. In the modern world, understanding the behavior of fluids isn’t just academic – it’s essential. Fluid Mechanics stands as the backbone of many engineering advancements and solutions that shape our contemporary life, from sustainable water management and advanced transportation systems to energy-efficient designs and beyond. Engineers equipped with this knowledge aren’t just advancing their careers; they’re crafting the future. With our blend of theoretical insights and practical perspectives, you’ll not only grasp the essentials but also appreciate the profound impact of Fluid Mechanics on our world.
Through a combination of theoretical concepts, practical examples, and hands-on exercises, you’ll learn about the fundamental principles of fluid mechanics. Beyond the core principles, our course is enriched with numerical challenges, practice problems, and real-world fluid mechanics engineering applications. You’ll delve into the myriad applications of fluid mechanics.
Reference books for this course:
-
Fluid Mechanics by Yunus A. Cengel, John M. Cimbala
-
Fundamentals of Fluid Mechanics, 6th Edition By Munson
COURSE OUTLINE
Section 1: Introduction to Fluid Mechanics
-
Introduction to Fluid Mechanics
-
Application Area of Fluid Mechanics
-
Dimensions and Importance of Dimensions and Units
-
Dimensional Homogeneity and Unity with example problems
-
Calculation of Dimensional Analysis
-
Dimensionless Numbers (Reynolds, Bingham & Nusselt Number)
-
Measures of Fluid Mass and Weight (Density, Specific Weight, Specific Gravity) and the Relation between Density and Specific Weight
-
Classification of Fluid Flow (Internal and External, Compressible and Incompressible, Laminar and Turbulent, Steady and Unsteady)
-
Calculation of Reynold, Bingham & Nusselt numbers (Dimensionless Numbers)
Section 2: Nature of Fluids and Viscosity
-
Nature of Fluids (The no Slip Condition in Fluid Dynamics)
-
Shear Stress in Moving Fluid, (Derivation Shear stress is directly proportional to strain rate)
-
Viscosity and Fluid Types (Newtonian and Non-Newtonian Fluid)
-
Shear Thickening Fluids and Shear Thinning Fluid
-
Numericals Related to Newton’s Law of Viscosity (Newtonian Fluid)
-
Calculation of Shear Stresses
-
Velocity Profiles
Section 3: Pressure and Buoyancy
-
Pressure (Fluid Pressure and Hydrostatic Pressure)
-
Calculation of Specific Gravity
-
Manometry (Piezometer, U tube manometer, Differential Monometer)
-
Questions related to Monometer for pressure calculation
-
Buoyancy and Steps for Solving Buoyancy Questions
-
Numerical related to Buoyancy
Section 4: Fluid Flow Rates and Bernoulli’s Equation
-
Fluid Flow Rates
-
Continuity Equation
-
Calculation of Fluid Flow Rate using Continuity Equation
-
Commercially Available Pipe and Tubing (Steel Pipe, Steel Tubing, Copper Tubing, Ductile Iron Pipe)
-
Pipe Selection Aid
-
Question Calculation of Volume Flow Rate by Pipes and Tubes Table
-
Determine Pipe Size and Tube Size from Tables
-
Conservation of Energy (Bernoulli’s Equation),
-
Derivation of Bernoulli’s Equation
-
Interpretation of Bernoulli’s Equation
-
Restriction on Bernoulli’s Equation
-
Numerical related to Bernoulli’s Equation
-
Problem related to the calculation of volumetric flow rate through the nozzle using Bernoulli’s Equation
-
Application of Bernoulli’s Equation (Tanks, Reservoirs, and Nozzles Exposed to the Atmosphere)
-
Calculation of volumetric flow rate in Venturi Meter
-
Torricelli’s Theorem
-
Questions related to Torricelli’s Theorem
Section 5: General Energy Equation and Pump Efficiency
-
General Energy Equation (Pumps, Fluid Motors, Fluid Friction, Valves, and Fittings)
-
Mechanical Energy and Efficiency
-
Nomenclature of Energy Losses and Addition
-
Questions Related to Energy Equation
-
Power Required by the Pumps
-
Mechanical Efficiency of Pumps
-
Numerical related to Pumps
-
Calculation of Mechanical Efficiency of the Pump
-
Power Delivered to Fluid Systems
-
Mechanical Efficiency of Fluid
-
Calculation of Power Delivered to Fluid and its Mechanical Efficiency
Section 6: Reynolds Number and Friction Loss
-
Critical Reynolds Number
-
Reynolds Number for closed non-circular cross-sections
-
Hydraulic Radius for non-circular pipes
-
Solving Problems using Moody’s Chart
-
Calculation of Reynolds Number for non-circular pipes
-
Friction Loss in non-circular cross-section
-
Calculation of Friction loss using Moody’s Chart
-
Energy Loss due to Friction
-
Darcy’s Equation
-
Friction Loss in Laminar and Turbulent Flow
Section 7: Energy Losses
-
Minor Losses
-
Sudden Enlargement and losses due to Sudden Enlargements,
-
Calculation of energy loss due to sudden enlargement
-
Exit loss and calculation of energy loss due to exit loss
-
Gradual Enlargement and calculation of energy loss due to gradual enlargement
-
Sudden Contraction and calculation of energy loss due to sudden contraction
-
Entrance Loss and calculation of energy loss due to Entrance
-
Minor Losses (through Valves and Fittings) with procedure for calculation
-
Resistant Coefficient for Valves & Fittings
-
Calculation of all the energy loses in moving fluid
Section 8: Flow Measurement
-
Flow Measurement
-
Flow meters selection factors
-
Variable head meters, Venturi, Flow Nozzle, Orifice
-
Variable Area Flow Meters
-
Rotameter
-
Flow Rate and Velocity Measurements
-
Velocity Probes
-
Open Channel Flow Measurement (Weirs, Rectangle Notch, Contracted Weir, Triangle Weir)
Section 9: Pumps and Cavitation
-
Positive Displacement Pumps
-
Reciprocating Pumps
-
Rotary Pump
-
Kinetic Pump
-
Self-Priming Pump
-
Centrifugal Pump
-
Affinity Law for centrifugal pumps
-
Numerical using Affinity Law
-
Manufacturer’s data for centrifugal pumps
-
Effect of Impeller Size
-
Power and Efficiency of Pumps
-
Cavitation
-
Vapor Pressure
-
NPSH Margin
Join our Fluid Mechanics course and commence a profound exploration into the essentials of fluid mechanics.
-
1Introduction to Fluid Mechanics, Applications,Importance of Dimensions and UnitsVideo lesson
-
2Dimensions, Dimensional Homogeneity and Unity, Example ProblemVideo lesson
-
3Problem Related to Dimensional Analysis, Dimensionless NumbersVideo lesson
-
4Measure of Fluid Density, Specific WeightSpecific Gravity and relation b/w themVideo lesson
-
5Problems Related to Fluid Analysis, Classification of FluidsVideo lesson
-
6Problems Related to Reynold, Bingham & Nusselt numbersVideo lesson
-
7Nature of Fluids (The no Slip Condition in Fluid Dynamics)Video lesson
-
8Shear Stress in Moving Fluid (shear stress is proportional to strain rate)Video lesson
-
9Viscosity, Fluid Types, Shear Thickening Fluids and Shear Thinning FluidVideo lesson
-
10Problems Related to Newton Law of Viscosity and calculation of Shear StressesVideo lesson
-
11Reynolds Number, Calculation of Reynolds Number, Velocity ProfilesVideo lesson
-
12Fluid Pressure and Hydrostatic Pressure, Calculation of Specific GravityVideo lesson
-
13Manometry (Piezometer, U tube manometer, Differential Monometer)Video lesson
-
14Buoyancy, Steps for solving Buoyancy Problems, Question related to BuoyancyVideo lesson
-
15Problems related to BuoyancyVideo lesson
-
16Fluid Flow Rates, Flow Rates, Continuity Equation, Question Related to Flow RateVideo lesson
-
17All type of Commercially Available Pipe and Tubing, Pipe Selection AidVideo lesson
-
18Problems to Calculate Volume Flow Rate and Pipe and Tube Size from tables.Video lesson
-
19Bernoulli’s Equation, Interpretation and Restriction on Bernoulli’s EquationVideo lesson
-
20Problems Related to Bernoulli’s EquationVideo lesson
-
21Calculation of volumetric flow rate through the nozzle using BernoulliVideo lesson
-
22Application of Bernoulli’s Equation (Tanks, Reservoirs and Nozzles )Video lesson
-
23Calculation of volumetric flow rate in Venturi Meter, Torricelli’s TheoremVideo lesson
-
24Problems related to Torricelli’s TheoremVideo lesson
-
25Complex Problem related to Bernoulli’s EquationVideo lesson
-
26General Energy Equation,Mechanical Energy and Efficiency, Nomenclature of EnergyVideo lesson
-
27Problems Related to Energy Equation(Pumps, Fluid Motors, Fluid Friction, Valves)Video lesson
-
28Power Required and Mechanical Efficiency of Pumps, Numerical related to pumpsVideo lesson
-
29Problem related to Mechanical Efficiency of the PumpVideo lesson
-
30Power Delivered and Mechanical Efficiency of Fluid Systems with solve NumericalVideo lesson
-
31Reynolds Number and Hydraulic Radius for closed non circular cross sectionsVideo lesson
-
32Solving Problems using Moody’s ChartVideo lesson
-
33Problem related to the calculation of Reynolds Number for non-circular pipesVideo lesson
-
34Friction Loss in non-circular cross section, Numerical Related to Friction lossVideo lesson
-
35Energy Loss by Friction,Darcy’s Equation, Friction Loss in Laminar and TurbulentVideo lesson
-
36Minor losses, Looses Due to Sudden Enlargements and NumericalVideo lesson
-
37Calculate energy loss due to Sudden enlargementsVideo lesson
-
38Exit Loss and Gradual Enlargement and Numericals related to these topicsVideo lesson
-
39Sudden Contraction, Calculation of energy loss due to sudden contractionVideo lesson
-
40Gradual Contraction, Entrance Loss, Calculation of energy loss due to EntranceVideo lesson
-
41Minor Losses and Resistant Coefficient through Valves and FittingsVideo lesson
-
42Numericals for the Calculation of all the Energy LoosesVideo lesson
-
43Continue to Previous ProblemsVideo lesson

External Links May Contain Affiliate Links read more