Complete Data Science & Machine Learning Course
- Description
- Curriculum
- FAQ
- Reviews
Course Title: Complete Data Science and Machine Learning Course
Course Description:
Welcome to the “Complete Data Science and Machine Learning Course”! In this comprehensive course, you will embark on a journey to master the fundamentals of data science and machine learning, from data preprocessing and exploratory data analysis to building predictive models and deploying them into production. Whether you’re a beginner or an experienced professional, this course will provide you with the knowledge and skills needed to succeed in the dynamic field of data science and machine learning.
Class Overview:
-
Introduction to Data Science and Machine Learning:
-
Understand the principles and concepts of data science and machine learning.
-
Explore real-world applications and use cases of data science across various industries.
-
-
Python Fundamentals for Data Science:
-
Learn the basics of Python programming language and its libraries for data science, including NumPy, Pandas, and Matplotlib.
-
Master data manipulation, analysis, and visualization techniques using Python.
-
-
Data Preprocessing and Cleaning:
-
Understand the importance of data preprocessing and cleaning in the data science workflow.
-
Learn techniques for handling missing data, outliers, and inconsistencies in datasets.
-
-
Exploratory Data Analysis (EDA):
-
Perform exploratory data analysis to gain insights into the underlying patterns and relationships in the data.
-
Visualize data distributions, correlations, and trends using statistical methods and visualization tools.
-
-
Feature Engineering and Selection:
-
Engineer new features and transform existing ones to improve model performance.
-
Select relevant features using techniques such as feature importance ranking and dimensionality reduction.
-
-
Model Building and Evaluation:
-
Build predictive models using machine learning algorithms such as linear regression, logistic regression, decision trees, random forests, and gradient boosting.
-
Evaluate model performance using appropriate metrics and techniques, including cross-validation and hyperparameter tuning.
-
-
Advanced Machine Learning Techniques:
-
Dive into advanced machine learning techniques such as support vector machines (SVM), neural networks, and ensemble methods.
-
-
Model Deployment and Productionization:
-
Deploy trained machine learning models into production environments using containerization and cloud services.
-
Monitor model performance, scalability, and reliability in production and make necessary adjustments.
-
Enroll now and unlock the full potential of data science and machine learning with the Complete Data Science and Machine Learning Course!
-
2Python Complete Course IntroductionVideo lesson
-
3Python Class 1 : Introduction To PythonVideo lesson
-
4Python Class 2 : Setting Python EnvironmentVideo lesson
-
5Python Class 3 : Introduction To VariablesVideo lesson
-
6Python Class 4 : Introduction To KeywordsVideo lesson
-
7Python Class 5 : Introduction To DatatypesVideo lesson
-
8Python Class 6 : ID FunctionVideo lesson
-
9Python Class 7 : Arithmetic OperatorVideo lesson
-
10Python Class 8 : Logical OperatorVideo lesson
-
11Python Class 9 : Comparison OperatorVideo lesson
-
12Python Class 10 : Bitwise OperatorVideo lesson
-
13Python Class 11 : Membership OperatorVideo lesson
-
14Python Class 12 : Identity OperatorVideo lesson
-
15Python Class 13 : Conditional StatementsVideo lesson
-
16Python Class 14 : For Loop and Range FunctionVideo lesson
-
17Python Class 15 : While LoopsVideo lesson
-
18Python Class 16 : Break and ContinueVideo lesson
-
19Python Class 17 : FunctionVideo lesson
-
20Python Class 18 : Try Except Finally BlocksVideo lesson
-
21Python Class 19 : String and FunctionsVideo lesson
-
22Python Class 20 : List and FunctionsVideo lesson
-
23Python Class 21 : Tuple and FunctionsVideo lesson
-
24Python Class 22 : Dictionary and FunctionsVideo lesson
-
25Python Class 23 : Class and ObjectVideo lesson
-
26Python Class 24 : Class MethodsVideo lesson
-
27Python Class 25 : Inheritance and its typesVideo lesson
-
28Python Class 26 : Polymorphism and its typesVideo lesson
-
29Python Class 27 : Encapsulation and Access ModifiersVideo lesson
-
30Python Class 28 : AbstractionVideo lesson
-
31Python Class 29 : Mini ProjectVideo lesson
-
32Python AssignmentText lesson
-
33Complete Data Science CourseVideo lesson
-
34Numpy Complete CourseVideo lesson
-
35Numpy Class 1 : Import and InstallVideo lesson
-
36Numpy Class 2 : Array and its TypesVideo lesson
-
37Numpy Class 3 : DatatypesVideo lesson
-
38Numpy Class 4 : NDIM FunctionVideo lesson
-
39Numpy Class 5 : ARANGE FunctionVideo lesson
-
40Numpy Class 6 : CONCATENATE FunctionVideo lesson
-
41Numpy Class 7 : NDMIN FunctionVideo lesson
-
42Numpy Class 8 : NDITER FunctionVideo lesson
-
43Numpy Class 9 : All FunctionsVideo lesson
-
44Pandas Class 1 : Import DatasetVideo lesson
-
45Pandas Class 2 : Head & Tail FunctionVideo lesson
-
46Pandas Class 3 : Info FunctionVideo lesson
-
47Pandas Class 4 : Drop na FunctionVideo lesson
-
48Pandas Class 5 : Fill na FunctionVideo lesson
-
49Pandas Class 6 : Drop Duplicates FunctionVideo lesson
-
50Pandas Class 7 : Replace Values FunctionVideo lesson
-
51Matplotlib Class 1 : Import DatasetVideo lesson
-
52Matplotlib Class 2 : Show FunctionVideo lesson
-
53Matplotlib Class 3 : Marker FunctionVideo lesson
-
54Matplotlib Class 4 : Xlabel Ylabel FunctionVideo lesson
-
55Matplotlib Class 5 : Title FunctionVideo lesson
-
56Matplotlib Class 6 : Linestyle Linewidth FunctionVideo lesson
-
57Matplotlib Class 7 : BarplotVideo lesson
-
58DATA SCIENCE ASSIGNMENTText lesson
External Links May Contain Affiliate Links read more